INFRARED SPECTROMETRIC STUDY OF THE INTERACTION BETWEEN 2-DIMETHYLAMINO-3,3-DIMETHYL-1 AZIRINE AND SOME PHENOL DERIVATIVES

J. **VAES** and Th. ZEEGERS-HUYSKENS

Department of Chemistry, 200-F Celestijnenlaan, 3030 Heverlee, Belgium

(Receivedin the UK I5 December 1975; Acceptedjorpublication 21 March 1976)

Abstrect-The H-bonded compleses between 2-dimethylamino-3,3-dimethyl-I-azirine (TMAAZ) and some phenol derivatives have been studied by IR spectrometry in carbon tetrachloride. The equilibrium constants at 300,315 and 328 K and the $-\Delta H^{\circ}$, $-\Delta \nu_{\text{OH}}$ and $\Delta \nu_{\text{C-N}}$ values have been determined. The comparison with previously studied OH.. **N complexes shows that** TMAAZ forms stronger complexes than would be expected from the pK. value. These facts are discussed in terms of steric, hybridization, solvation and charge transfer effects. From a p K_a of 8, the IR spectrum shows the appearance of ion pairs $N^{\text{+}}-H$... O. A predominance of protonated species can be calculated for a p K_a of 6. This can explain why 1,2-ring cleavage whose first step is probably the formation of an azirinium cation. occurs for acids characterized by pK_a values lower than 5 but not for enolizable ketones having pK_a values higher than 9.

LSTRODUCTION

Hydrogen-bonded complexes between phenol derivatives and nitrogen bases such as aliphatic amines, pyridines or anilines have been extensively studied by spectroscopic methods; there is however no information on the complexing properties of 3-membered cyclic amidines. In this work, an attempt has been made to report some thermodynamic and spectroscopic properties of the H-bonded complexes formed between phenol derivatives and 2-dimethyl-amino-3,3-dimethyl-1-azirine (TMAAZ).

In this molecule, the value of $58.5 \text{ kJ} \text{ mol}^{-1}$ for the barrier to rotation about the C^2-N^2 bond' suggests an important delocalization in the $N' = C^2-N^2$ chain; this value is about 4 kcal mol⁻¹ higher than in the amidines characterized by the same degree of substitution. For these amidines, an $IR²$ and dipolemetric study³ suggest that the formation of an H-bond with hydroxylic derivatives takes place on the imin@N atom; *ab initio* calculations' show that in the azirines, the preferential protonation site is the σ pair of the endocyclic N atom.

The minimal basis set (STO-3G) Gaussian *ab initio* method was used in quantum chemical calculations.'

EXPERIMENTAL

TMAAZ was synthetized by a method already described.' The other materials were obtained commercially. Phenol (Merck p.a.), the halogenated derivatives (Fluka purissimum p.a.) and $3,5$ -diCF, phenol (Pierce Chem. Co.) were recrystallised from petroleum ether. CCL (Baker for spectroscopy) was dried on molecular sieves 4 A. Spectral measurements were carried out on a P.E. 325 spectrophotometer. The temp. in the cell was measured by means of a thermistor immersed in the cell. The equilibrium constant of the following reaction was calculated by measuring the absorbance of the $1v_{\text{OH}}$ band at $\sim 3600 \text{ cm}^{-1}$,⁶ with concentrations ranging from 5 to 25×10^{-3} mol dm⁻³ for the phenol derivatives and from 10 to 80×10^{-3} moldm⁻³ for TMAAZ. In this limited range, the value of K remains constant and only complexes of 1: **I** stoichiometry contribute to the spectra.

The spectra were recorded in CCL at 300, 315 and 328 K immediately after the preparation of the solns to avoid further reactions. After 5 hr, no variation of the absorbance of the ν_{OH} and v_{C-N} was observed. It can thus be concluded that at these temps and low concentrations, TMAAZ does not react with phenol. **However, on refluxing TMAAZ in the presence of phenol, a dihydropyrazine derivative was obtained.'** A **reaction with CS,** has been described," but no reaction could be detected with CCl₄.

Table 1. Association constant, $K(dm^3 mol^{-1})^*$ at $300(\pm 0.5)$, $315(\pm 0.5)$ and $328(\pm 0.5)$ K

FHENOL DERIVATIVE	,300K	1.515K	\times 325K	
3,4-diCH ₃ phenol	106	59	40	
4-CH ₃ phenol	146	64	45.5	
phenol	190	103	71.5	
4-Cl phenol	428	246	151	
3-C1 phenol	532	367	255	
4-I phenol	584	303	226	
3-Br phenol	697	346	$2 - 4$	
3.4-diCl phenol	1300	615	394	
3.5-diC1 phenol	2263	1043	542	

* standard deviation $\epsilon = \left(\frac{\Sigma \Lambda K^2}{n}\right)^{1/2} = 53$

RESULTS AND DISCUSSION

Figure 1 shows the IR spectrum (3600-3000 cm⁻¹) obtained for TMAAZ-Phenol; by adding TMAAZ, a lowering of the absorbance of the free ν_{OH} band and a new band lying at about 3150 cm⁻¹ ascribable to the v_{OH} _N vibration were observed.

The association constants determined at three temps

$$
\sum_{X}
$$
OH + TMAAZ \Longrightarrow
$$
\sum_{X}
$$
OH ... TMAAZ

Fig. 1. IR spectrum (3600-2600 cm⁻¹); **TMAAZ** $(C = 15 \times$ - Phenol + TMAAZ (same concentrations $S = CCL$; $d = 0.002$ m. 10^{-3} mol dm⁻³); -

Table 2. Association enthalpy, $-\Delta H \cdot (kJ \text{ mol}^{-1})$ and frequency shift $\Delta \nu_{\text{OH}}$ and $\Delta \nu_{\text{C-N}}$ (in cm⁻¹)

PHENOL DERIVATIVE	- 6H°	× Δv_{OH}	the to $\mathfrak{a}_{\mathbb{C}^n\mathbb{C}^n\mathbb{N}}$
3,4-diCH, phenol	29.7	433	6
4 CH, phenol	30.1	437	7
phenol	31.3	451	7
4-Cl phenol	32.6	489	7
3-C1 phenol	32.2	490	8
4-I phenol	31.8	491	8
3-Br phenol	33.4	495	8
3.4-diCl phenol	34.7	521	8
3.5-diCl phenol	35.5	541	8
3,5-diCH, phenol		543	9

accuracy = 5 cm⁻¹ for the broad absorption bands $(\nu_{\text{OH},..,K})$ and 1 cm⁻¹ for the narrow absorption bands $(\nu_{C=N})$.

registred in extended scale

Table 3. Association parameters for OH . . . N bonds

	ANILINE	PYRIDINE	TMAAZ	TRIETHYLAMINE
pK _a	4.57	5.17	6.9	10.65
$K(dm^3.mol^{-1})$	4.6^{6}	46.3^{6}	190	48.5 ¹¹
Δv_{OH} (cm ⁻¹)	350 ⁶	470^{6}	451	$~\sim$ 550 11
$-M^{\circ}$ (kJ mol ⁻¹)	21.7^{16}	27.2 ¹⁴	31.3	$33.4 - 37.6$ ¹⁵
$-AS^{\circ}$ (J mol ⁻¹ K ⁻¹) 58.5 ¹⁶		62.7^{14}	$54 - 58$	$79 - 88$ ¹⁵

(300, 315 and 328 K), the association enthalpies $-\Delta H^{\circ}$ calculated from the values of K at 300 and 328°K are given in Table 1, which also lists the values of Δv_{OH} , the lowering of the 1 ν_{OH} vibration band and $\Delta \nu_{\text{C-N}}$, the enhancement of the wave number of the 1 v_{C-N} vibration.

(1) Influence of the substitution on the association parameters

The influence of the substitution on the stability of the complexes can be expressed by a Hammett relation; for each temp., the least squares method leads to the following equations $(r =$ correlation coefficient)

 $log K^{300K} = 2.34 + 1.32 \Sigma \sigma_H$ (r = 0.997) $\log K^{315K} = 2.05 + 1.29 \Sigma \sigma_H$ (r = 0.998) $log K^{328K} = 1.89 + 1.25 \Sigma \sigma_H$ (r = 0.999)

showing that ρ diminishes slightly with increasing temp. At room temp. (300 K) the ρ value can be compared with values obtained for other systems, such as the complexes of the same phenol derivatives with aniline ($\rho = 0.67$), with pyridine $(\rho = 0.98)^{10}$ and with triethylamine $(\rho = 0.98)^{10}$ 1.32).¹¹ This suggests that ρ cannot be related to the pK_a value of the base; better correlations-although not linear—are obtained using the values of $-\Delta H^{\circ}$, the association enthalpy."

Substitution on the phenol ring has also a marked influence on $\Delta \nu_{\text{OH}}$ values; these are greater for electronattracting substituents and the Hammett relation can be written

$$
\Delta\nu_{\rm OH} = 456 + 109 \Sigma \sigma_{\rm H}.
$$
 (r = 0.992)

In the same family of complexes, the $\Delta\nu_{\text{OH}}$ values are linearly related to the association enthalpies.

(2) Comparison with other OH ... N complexes

The values listed in Table 3 allow comparison of the pK_a values of some nitrogen bases and the K, $-\Delta H^{\circ}$, $\Delta \nu_{\text{OH}}$ and $-\Delta S^{\circ}$ values relative to the unsubstituted phenol taken as reference acid.

It is clear that the K value relative to the complex phenol-TMAAZ is higher than would be predicted from the pK_a of the base and some factors may affect the pK_a in aqueous solutions and the association parameters differently.

On the one hand, the cyclic amidines are characterised by lower pK_a values than the amidines of the same degree of substitution, in spite of a greater delocalisation in the $N^1 = C - N^2$ group. The weak basicity can be explained by hybridization effects in the strained cyclic molecules; in such molecules, the endocyclic atoms of the ring contain more pure 2p orbitals.^{17,18} As a result, the s character of the free electron pair on the endocyclic N atom is more pronounced. Hybridization plays an important role in the basicity of nitrogen bases'9,20 and the lower the p character, the lower the basicity.

The basicity is also affected by solvation stabilization of the basic sites; these effects tend to stabilize ions such as anilinium, pyridinium and alkylammonium. $2^{1,22}$ In the case of TMAAZ however, there are two basic centres and eventhough the protonation definitely takes place on the N nitrogen atom, the ²N atom can also be solvated by at least one molecule of water:

In such a structure, the electronic pair of the N^2 atom is partially engaged in the hydrogen bond and the delocalisation in the $N^1 = C-N^2$ is lowered. The value of 58.5 kJ mol⁻¹ for the barrier to rotation around the $C-N^2$ bond has been determined experimentally in CDCl₃ and does not appreciably differ from the value calculated theoretically for the isolated molecule⁴ but this barrier may be lower for a solvated molecule. In the extreme case, the rotational barrier calculated for the molecule protonated on the N^2 atom was found equal to 0 kJ mol⁻¹.

Basicity measured in water does not provide a completely accurate scale of basic strength. Proton affinity measurements should give a better scale but have not yet been carried out for the azirines.

On the other hand, the thermodynamic parameters of H-bonded complexes are influenced by several factors. First of all, theoretical calculations based on Murrell's second-order perturbation theory of intermolecular forces have shown that H-bonding becomes stronger as the acceptor lone pair orbital possesses less s character.²¹ Increase in the s character of the lone pair of 'N should discourage both H-bond formation and protonation. This suggests that hybridization does not play a determining role in the stability of the complexes studied in this work.

Two other factors must be taken into account in order (4) *Proton transfer in the hydrogen bond* to explain the great complexing ability of TMAAZ. For H-bonded complexes of phenols

was found to be 61° (for 2 N,N-Dimethyl-3 phenoxy-3 amido-1 azirine) 24 and the approach angle available for the formation of a H-bond is about 300"; this angle is estimated as 244" for pyridine and is much smaller for triethylamine where the accumulation of three alkyl groups produces an important steric strain; this agrees with the high $-\Delta S^{\circ}$ values usually found for complexes of tertiary aliphatic amines.

(2) The net charge density on the 'N atom found by *ob* initio calculations⁴ is -0.25 e in the isolated molecule. This value is probably very similar in apolar solvents of low dielectric constant. This value is higher than the net charge density on the N atom of pyridine $(-0.14 e)^{25}$ or aniline $(+0.06e)^{26}$ and the enhancement of the dipolar and polarization effects favorizes the formation on an H-bond. High charge density also facilitates charge transfer from the non-bonding electrons to the $\sigma\ddot{\delta}_H$ antibonding orbital of the OH group

(3) Frequency shift of the v_{C-N} vibration

Figure 2 indicates that the wavenumber of the v_{C-N} stretching vibration of TMAAZ, lying at 1771 cm^{-1} in the free molecule, shifts to higher value when complexed with 3-U phenol; the shifts are higher for more acidic phenols. This frequency enhancement is rather unusual but has been observed for the ν_{CAN} vibration of nitriles complexed with Lewis acids such as SnCL, $AICI_3$, BF_3 , $27-29$ In these complexes, the increase in the force constant of the $C \equiv N$ bond is usually explained by a lowering of the distance between the two atoms and by a more pronounced s character of the bond. This explanation is not consistent with the theoretical data relative to TMAAZ; calculations show that the $C=N¹$ distance increases from 1.296 to 1.306×10^{-8} cm and the C-N² distance decreases from 1.366 to 1.315×10^{-8} cm on protonation.⁴ Thus the two distances become very *similar* in the protonated species and, in our case, the enhancement of the v_{C-N} band could be better explained in terms of coupling between the v_{C-N^2} and ν_{C-N} vibrations. The variations in the two distances in the H-bonded complex are of course less than in the ion but are expected to vary in the same sense.

explain the great complexing ability of TMAAZ. For H-bonded complexes of phenols whose pK_a is 1. The accessibility of the endocyclic nitrogen atom; higher than 8.20 (CH₃, H, 4-Cl, 3,4-diCl) the IR shows a 1. The accessibility of the endocyclic nitrogen atom; higher than 8.20 (CH₃, H, 4-Cl, 3,4-diCl) the IR shows a the CN¹C angle—determined by X-ray crystallography— broad absorption band lying at 3200–3100 cm⁻¹ ($\nu_{\$ broad absorption band lying at 3200-3100 cm⁻¹ (v_{OH} N

Fig. 2. IR spectrum in the $\nu_{\text{C-N}}$ region. $C_{\text{TMAAZ}} = 15 \times 10^{-3}$ mol dm⁻³; $C_{3 \text{ C1-phenol}}$: (1) = 0; (2) = 7 × 10⁻³; (3) = 9 × 10⁻³; $(4) = 15 \times 10^{-3}$ mol dm⁻³.

vibration) but for 3,5-diCl phenol ($pK_a = 8.18$) a second band was observed in the range $2800-2500$ cm⁻¹; the intensity of this band increases for the more acidic 3,5-diCF, phenol (p K_a = 7.80). The presence of this band can be ascribed to the formation of proton transferred species³⁰ (O⁻ ... H^{*}N bonds). From a pK_a of 8 it thus seems that ionic complexes appear in solution. On the other hand, some recent experiments by Vittorelli et al.³¹ indicate that the reaction of carboxylic acids ($pK_a = 3.75-$ 4.75) or enolizable ketones ($pK \approx 5$) with TMAAZ yields adducts resulting from a 1,2-opening of the 3-membered ring; in these reactions the first step is probably the formation of an azirinium cation. However, the enolizable ketones ($pK_a = 9$) do not react. The results of the present work suggest that from a $pK_a = 8$, formation of protonated species occurs; moreover, previous work suggests that the transition from the case where the fraction of ion pairs is only 0.1 to the case where it reaches 0.9, takes place within a range of $2 pK_a$ units.³² For the complexes of the present work, an important proportion of ion pairs should be obtained when the pK_a of the hydroxylic compound is about 6. Below this pK_a , in solvents of low dielectric constants (pentane, xylene), TMAAZ will be protonated and will, in a further step, undergo 1,2 cleavage. The enolizable ketones $(pK_a = 9)$, or higher) are not strong enough acids to protonate TMAAZ and only form hydrogen-bonded complexes with this molecule.

Acknowledgemen&-The authors thank Prof. L. Ghosez for the hospitality and assistance during the synthesis of TMAAZ and Prof. **J. M. Andre for many helpful discussions. They thank** Prof. G. King **for help with the English text. This work was supported by the NFWO of Belgium. J.V. is indebted lo the IWONL for a grant.**

REFERENCES

- 'M. **Rens, Ph.D Thesis. University of Louvain (1973).**
- **'J. Vaes, F. Foubert and Th. Zeegers-Huyskens, Can. 1.** *Chem.* **53, 604 (1975).**
- 'P. **Huyskens and F. Foubert, Ibid. 54,610 (1976).**
- ¹J. M. André, personal communication.
- 'M. Rens and L. Ghosez, *Tetrahedron Letfers N* 43,376s **(1970).**
- 'A. M. Dierckx, P. Huyskens and **Th. Zeegers-Huyskens, J. Chim. Phys. 62, 336 (1965).**
- **'P. Hoet. Ph.D. Thesis. Universitv of Louvain (1975).**
- ⁸E. Schaumann, E. Kausch and W. Walter, Chem. Ber. 108, 2500 **(1975).**
- **'G.** Lichtfus and Th. Zeegers-Huyskens, **Spectrochim. Acta 28A, 2069 (1972).**
- **'"D.** Clotman, I. P. Muller and Th. Zeegers-Huyskens, **Bull. Sot. Chim.** *Beiges* **79, 689 (1970).**
- **"D.** Clotman and **Th. Zeegers-Huyskens, Spectrochim. Acta 26A, 1621 (1970).**
- **'Th. Zeegers-Huyskens, to be published.**
- **"D. Clotman and Th. Zeegers-Huyskens, Specrrochim.** *Acra 23A,* **1627 (1%7).**
- ¹⁴D. Neerinck and L. Lamberts, Bull. Soc. Chim. Belges 75, 473 **(1%6).**
- **"Mean values quoted by M. D. Joesten and L. Schaad, Hydrogen-Bonding. Marcel Dekker, New York (1974).**
- ¹⁶D. Neerinck, Ph.D. Thesis, University of Leuven (1968).
- ¹⁷C. A. Coulson and T. H. Goodwin, *J. Chem. Soc.* 2851 (1962).
- "D. Peters, **Tetrahedron 19, 1539 (1%3).**
- **'W. D. Weringa and M. D. Janssen, Reel. Trau. Chem. 81, 1372 (1%8).**
- **"J. W. Eastes, M. Aldridge, R. Minesinger and M. J. Kamlet, 1. 0~. Chem. 36, 3847 (1971).**
- **2'E. Folkers and 0. Runquist, Ibid. 29, 830 (1964).**
- 22F. E. **Condon. J. Am. Chem. Sot. 87.4881. 4489 (1965).**
- ²³F. B. Van Duijneveldt, *J. Chem. Phys.* 49, 1424 (1968).
- ***'I. Galley,** Ph.D. Thesis, University of Louvain (1974).
- ***'A. S. N. Murthy and C. N. R. Rao, 1. Mol.** *Strucr.* **6,253** (1970).
- ²⁶C. A. Coulson, *Valence*, p. 273. Oxford University Press (1961).
- ²⁷E. Augdahl and P. Klaboe, *Spectrochim. Acta* 19, 1665 (1963).
- **'"A. Terenin, B. Filiminov and D. Bvstrow. Z.** *Elektrochem. 62.* **180 (1958).**
- **mD. F. Shriver and B. Swanson, Inorg.** *Chem.* **10,** *1354 (1971).*
- *"WI.* **Zeeaers-Huvskens.** *Soectrochim.* Acta. *23A. 855 (1%7).*
- ¹¹P. Vittorelli, H. Heimgartner, H. Smid, P. Hoet and L. Ghosez, *Tetruhedron 30, 3737 (1974).*
- **'*P.** Huyskens and Th. Zeegers-Huyskens, 1. *Chim.* Phys. 61, 81 (1964) .